111 research outputs found

    Degradation of Toluene and Trichloroethylene by Burkholderia cepacia G4 in Growth-Limited Fed-Batch Culture

    Get PDF
    Burkholderia (Pseudomonas) cepacia G4 was cultivated in a fed-batch bioreactor on either toluene or toluene plus trichloroethylene (TCE). The culture was allowed to reach a constant cell density under conditions in which the amount of toluene supplied equals the maintenance energy demand of the culture. Compared with toluene only, the presence of TCE at a toluene/TCE ratio of 2.3 caused a fourfold increase in the specific maintenance requirement for toluene from 22 to 94 nmol mg of cells (dry weight)-1 h-1. During a period of 3 weeks, approximately 65% of the incoming TCE was stably converted to unidentified products from which all three chlorine atoms were liberated. When toluene was subsequently omitted from the culture feed while TCE addition continued, mutants which were no longer able to grow on toluene or to degrade TCE appeared. These mutants were also unable to grow on phenol or m- or o-cresol but were still able to grow on catechol and benzoate. Plasmid analysis showed that the mutants had lost the plasmid involved in toluene monooxygenase formation (pTOM). Thus, although strain G4 is much less sensitive to TCE toxicity than methanotrophs, deleterious effects may still occur, namely, an increased maintenance energy demand in the presence of toluene and plasmid loss when no toluene is added.

    Syntrophic propionate-oxidizing bacteria in methanogenic systems

    Get PDF
    This review summarizes discoveries in syntrophic propionate degradation research and reveals intriguing metabolic capabilities, mechanisms of cooperation and environmentally driven kinetics by taxonomically distinct microorganisms that are important for biotechnological applications and biogenic methane emissions.The mutual nutritional cooperation underpinning syntrophic propionate degradation provides a scant amount of energy for the microorganisms involved, so propionate degradation often acts as a bottleneck in methanogenic systems. Understanding the ecology, physiology and metabolic capacities of syntrophic propionate-oxidizing bacteria (SPOB) is of interest in both engineered and natural ecosystems, as it offers prospects to guide further development of technologies for biogas production and biomass-derived chemicals, and is important in forecasting contributions by biogenic methane emissions to climate change. SPOB are distributed across different phyla. They can exhibit broad metabolic capabilities in addition to syntrophy (e.g. fermentative, sulfidogenic and acetogenic metabolism) and demonstrate variations in interplay with cooperating partners, indicating nuances in their syntrophic lifestyle. In this review, we discuss distinctions in gene repertoire and organization for the methylmalonyl-CoA pathway, hydrogenases and formate dehydrogenases, and emerging facets of (formate/hydrogen/direct) electron transfer mechanisms. We also use information from cultivations, thermodynamic calculations and omic analyses as the basis for identifying environmental conditions governing propionate oxidation in various ecosystems. Overall, this review improves basic and applied understanding of SPOB and highlights knowledge gaps, hopefully encouraging future research and engineering on propionate metabolism in biotechnological processes

    The effect of anode potential on current production from complex substrates in bioelectrochemical systems: a case study with glucose

    Get PDF
    Anode potential can affect the degradation pathway of complex substrates in bioelectrochemical systems (BESs), thereby influencing current production and coulombic efficiency. However, the intricacies behind this interplay are poorly understood. This study used glucose as a model substrate to comprehensively investigate the effect of different anode potentials (− 150 mV, 0 mV and + 200 mV) on the relationship between current production, the electrogenic pathway and the abundance of the electrogenic microorganisms involved in batch mode fed BESs. Current production in glucose-acclimatized reactors was a function of the abundance of Geobacteraceae and of the availability of acetate and formate produced by glucose degradation. Current production was increased by high anode potentials during acclimation (0 mV and + 200 mV), likely due to more Geobacteraceae developing. However, this effect was much weaker than a stimulus from an artificial high acetate supply: acetate was the rate-limiting intermediate in these systems. The supply of acetate could not be influenced by anode potential; altering the flow regime, batch time and management of the upstream fermentation processes may be a greater engineering tool in BES. However, these findings suggest that if high current production is the focus, it will be extremely difficult to achieve success with complex waste streams such as domestic wastewater

    Syntrophic entanglements for propionate and acetate oxidation under thermophilic and high-ammonia conditions

    Get PDF
    Propionate is a key intermediate in anaerobic digestion processes and often accumulates in association with perturbations, such as elevated levels of ammonia. Under such conditions, syntrophic ammonia-tolerant microorganisms play a key role in propionate degradation. Despite their importance, little is known about these syntrophic microorganisms and their cross-species interactions. Here, we present metagenomes and metatranscriptomic data for novel thermophilic and ammonia-tolerant syntrophic bacteria and the partner methanogens enriched in propionate-fed reactors. A metagenome for a novel bacterium for which we propose the provisional name 'Candidatus Thermosyntrophopropionicum ammoniitolerans' was recovered, together with mapping of its highly expressed methylmalonyl-CoA pathway for syntrophic propionate degradation. Acetate was degraded by a novel thermophilic syntrophic acetate-oxidising candidate bacterium. Electron removal associated with syntrophic propionate and acetate oxidation was mediated by the hydrogen/formate-utilising methanogens Methanoculleus sp. and Methanothermobacter sp., with the latter observed to be critical for efficient propionate degradation. Similar dependence on Methanothermobacter was not seen for acetate degradation. Expression-based analyses indicated use of both H2 and formate for electron transfer, including cross-species reciprocation with sulphuric compounds and microbial nanotube-mediated interspecies interactions. Batch cultivation demonstrated degradation rates of up to 0.16 g propionate L-1 day-1 at hydrogen partial pressure 4-30 Pa and available energy was around -20 mol-1 propionate. These observations outline the multiple syntrophic interactions required for propionate oxidation and represent a first step in increasing knowledge of acid accumulation in high-ammonia biogas production systems

    Increasing sulfate levels show a differential impact on synthetic communities comprising different methanogens and a sulfate reducer

    Get PDF
    Methane producing microbial communities are of ecological and biotechnological interest. Syntrophic interactions among sulphate reducers and aceto/hydrogenotrophic and obligate hydrogenotrophic methanogens form a key component of these communities, yet, the impact of these different syntrophic routes on methane production and their stability against sulphate availability are not well understood. Here, we construct model synthetic communities using a sulphate reducer and two types of methanogens representing different methanogenesis routes. We find that tri-cultures with both routes increase methane production by almost two-fold compared to co-cultures, and are stable in the absence of sulphate. With increasing sulphate, system stability and productivity decreases, and does so faster in communities with aceto/hydrogenotrophic methanogens despite the continued presence of acetate. We show that this is due to a shift in these methanogens’ metabolism towards co-utilisation of hydrogen with acetate. These findings indicate the important role of hydrogen dynamics in the stability and productivity of syntrophic communities

    Cometabolic Degradation of Trichloroethylene by Pseudomonas cepacia G4 in a Chemostat with Toluene as the Primary Substrate

    Get PDF
    Pseudomonas cepacia G4 is capable of cometabolic degradation of trichloroethylene (TCE) if the organism is grown on certain aromatic compounds. To obtain more insight into the kinetics of TCE degradation and the effect of TCE transformation products, we have investigated the simultaneous conversion of toluene and TCE in steady-state continuous culture. The organism was grown in a chemostat with toluene as the carbon and energy source at a range of volumetric TCE loading rates, up to 330 mumol/liter/h. The specific TCE degradation activity of the cells and the volumetric activity increased, but the efficiency of TCE conversion dropped when the TCE loading was elevated from 7 to 330 mumol/liter/h. At TCE loading rates of up to 145 mumol/liter/h, the specific toluene conversion rate and the molar growth yield of the cells were not affected by the presence of TCE. The response of the system to varying TCE loading rates was accurately described by a mathematical model based on Michaelis-Menten kinetics and competitive inhibition. A high load of 3,400 mumol of TCE per liter per h for 12 h caused inhibition of toluene and TCE conversion, but reduction of the TCE load to the original nontoxic level resulted in complete recovery of the system within 2 days. These results show that P. cepacia can stably and continuously degrade toluene and TCE simultaneously in a single-reactor system without biomass retention and that the organism is more resistant to high concentrations and shock loadings of TCE than Methylosinus trichosporium OB3b
    corecore